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Abstract

The momentum transfer at the interface between a porous medium and an adjacent free fluid is investigated by introducing three dif-
ferent levels of description of the problem. This study focuses mainly on the up-scaling from the mesoscopic to the macroscopic level of
description. An explicit relation between the jump parameters, the location of the discontinuous interface (macroscopic description) and
the structure of the transition region (mesoscopic description) is obtained. This relation allows to explain the large sensitivity of the jump
parameters to the location of the discontinuous interface observed in previous studies. It is shown that it is crucial to conserve exactly the
forces in the up-scaling analysis.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of momentum transfer at the interface
between a porous medium and an adjacent free fluid has
been the object of considerable attention. Indeed, transport
phenomena at a fluid–porous interface are encountered in a
wide range of technological applications (packed-bed heat
exchangers, nuclear waste repositories, drying processes,
etc.), or in environmental sciences (flows in rivers,
ground-water pollution, flows over plant canopies, etc.).
The understanding of the momentum transfer at a fluid–
porous interface is crucial for the development of accurate
models in which other transfers are involved such as heat,
pollutants, oxide and carbon dioxide, passive solute, etc.

To study the fluid–porous interfacial region, three differ-
ent levels of description can be considered. At the micro-

scopic scale, the flow in the entire fluid domain (free fluid
region and pores of the porous medium) is governed by
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the well-known Navier–Stokes equations. However, for
most practical applications, it is not possible to compute
the flow in the entire fluid domain. The cost and the
present-day computer capacity are the first restrictions.
Furthermore, except for porous media with a simple struc-
ture, it is generally impossible to exactly describe the
porous medium at this scale due to its high local heteroge-
neity. Thus, the study of this problem requires to introduce
other levels of description. At the mesoscopic scale, the fluid
and solid phases are replaced by a single equivalent med-
ium. This is the basis of the continuum approach for flows
in porous media. At this continuous level, the zone located
in between the two homogeneous regions (i.e. porous med-
ium and free fluid), is a continuous heterogeneous transi-
tion zone, where the properties of the medium (e.g.

porosity) encounter strong but nevertheless continuous
variations. Finally, at the macroscopic scale, the system is
characterized by two homogeneous regions, separated by
an interface of discontinuity. This macroscopic scale
description requires to specify boundary conditions at the
interface between the two homogeneous media. These three
different levels of description are illustrated in Fig. 1.
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Nomenclature

dp size of a small cube (DNS simulation)
h height of the fluid channel
hb height of the porous medium
K permeability
Kp permeability of the homogeneous porous med-

ium
p pressure
u velocity
uA solution of the matched asymptotic analysis
uB slip velocity
uc solution at the mesoscopic scale
ud solution at the macroscopic scale
UD Darcy velocity
U1 asymptotic value of the velocity in the porous

medium as y ! �1
yi arbitrary position in the transition zone
yM location of the discontinuous interface
yw location of the center of gravity of the variable w
yimp location of the equivalent impermeable wall

Special symbols

hwi volumetric average (or phase average)
hwif intrinsic phase average

Greek symbols

a slip coefficient of Beavers and Joseph [1]
b stress jump coefficient of Ochoa-Tapia and

Whitaker [15]

d thickness of the boundary region
Dy difference between the center of gravity of the

friction surface-excess force and y//K

� d/h, small parameter
/ porosity
/p porosity of the homogeneous porous medium
l viscosity of the fluid
leff effective viscosity of the fluid in the porous med-

ium

Superscripts

ww non-dimensional variable
�w inner variable
wex first definition of the excess quantity
wexM second definition of the excess quantity
wexD third definition of the excess quantity

Subscripts
w+, w� constant asymptotic values of w outside the

transition zone
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The last level of description (i.e. macroscopic scale) is
the most commonly used for the study of practical applica-
tions. The main difficulty, when working at this level of
description, is the specification of appropriate boundary
conditions that must be applied at the interface. Beavers
and Joseph [1] have shown that the wall permeability
implies a non-zero velocity at the interface, i.e. an apparent
slip velocity. They have proposed a semi-empirical slip
boundary condition

du
dy

����
y¼0

¼ affiffiffiffiffiffi
Kp

p ðuB � U DÞ ð1Þ

that allows a non-zero velocity at the interface. Here, y ¼ 0
is the location of the interface, uB ¼ huijy¼0 is the free fluid
velocity at the interface, UD is the Darcy velocity inside the
porous medium, Kp is the permeability of the porous med-
ium and a is a dimensionless coefficient. The values of a are
adjusted to obtain good agreement with the experimental
data they provided [1]. Other studies have focused on the
determination of this coefficient. It has been found that this
coefficient strongly depends on the geometry of the transi-
tion region [2,21,17]. Furthermore, following different
approaches, Larson and Higdon [10,11], Sahraoui and
Kaviany [19] and Saffman [18] have shown that the value
of a depends strongly on the exact location of the interface
of discontinuity. However, no agreement on a best choice
for the determination of the exact location of this interface
of discontinuity inside the transition region has been
reached.

In [1], Beavers and Joseph used the Darcy’s law to
describe the flow in the porous medium. Since Darcy’s
law does not allow to describe any boundary layer region
within the porous region close to the interface, Neale and
Nader [13] proposed to use instead the Darcy-Brinkman
equation in the porous medium

leff

d2hui
dy2

� l
Kp

hui ¼ dhpif
dx

ð2Þ

where leff is the effective viscosity of the fluid in the porous
medium. Assuming continuity of both the velocity and
stress (built on the effective viscosity) at the interface, they
obtained a solution identical to that of Beavers and Joseph
[1] in the free fluid region provided that a ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
leff=l

p
. The

advantage of this approach appears clearly in situations
where it is important to describe the boundary layer within
the porous region. However, this approach has several lim-
itations. First, it is still not possible to predict the effective
viscosity leff of a given porous medium. Second, as stressed



Fig. 1. The three different scales of description of a porous/fluid transition.
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out by Nield [14], if the hypothesis of continuity of both the
velocity and stress is clearly valid at the microscopic level
(in the pores), nothing indicates that it is still valid at the
macroscopic level of description. Finally, the result is still
extremely sensitive to the exact location of the discontinu-
ous interface.

More recently, a very interesting approach to develop
appropriate jump conditions for the momentum transport
at the interface has been proposed by Ochoa-Tapia and
Whitaker [15,16]. In their work, they propose two model-
ing steps. The first one allows to go from the microscopic
description of the problem to the mesoscopic scale, using
the volume-averaging method. At this mesoscopic level, a
single volume-averaged transport equation is valid every-
where: in the two homogeneous regions as well as in the
heterogeneous transition zone. Then, in a second step, they
propose a method to derive jump conditions at the macro-
scopic scale of description, starting from the continuous
approach of the mesoscopic scale of description. The struc-
ture of their theory is comparable to that used to develop
jump conditions at fluid–fluid interfaces. An introduction
to this theory can be found in [7]. They obtain the follow-
ing stress jump condition:

dhui
dy

����
y¼0þ
� 1

/p

dhui
dy

����
y¼0�
¼ � bffiffiffiffiffiffi

Kp

p huijy¼0 ð3Þ

where /p is the porosity of the homogeneous porous med-
ium and b is a dimensionless parameter of the order of one.
As for the a coefficient, good agreement with the experi-
mental data of Beavers and Joseph [1] is obtained only
by adjusting the values of this parameter. Indeed, in their
analysis, b is a very complex function that depends on
the representations of several surface excess quantities,
whose values are unknown. It has to be noticed that the
derivation of the closure problem associated to the deter-
mination of this parameter still remains a challenge [9].
Ochoa-Tapia and Whitaker [15] do not provide an expli-
cit relation between b and the structure of the transition
region. However, they propose [16] a first numerical
attempt to determine the value of b by solving numerically
a variable porosity model in the transition zone. Unfortu-
nately, their attempt is not successful. Since the practical
use of the jump conditions (3) requires the specification
of the value of b, other studies are focusing on its determi-
nation [9,12,6]. The comparisons of different numerical
approaches, followed by Min and Kim [12] and by Deng
and Martinez [6], do not allow to understand the physical
origin of the jump parameter b, nor to relate its value to
the structure of the porous medium close to the interface.
By introducing a heterogeneous continuously varying tran-
sition zone between the porous region and the free-fluid
region, Goyeau et al. [9] obtain an explicit function for
the stress jump coefficient b. They are the firsts to exhibit
an analytic dependence of b to the continuous variations
of the porous structure. However, the expression proposed
for b is not closed, since it still depends on the unknown
velocity inside the transition zone. As they point out,
further studies are needed toward the exact determination
of b.

The two-step modeling approach introduced by Ochoa-
Tapia and Whitaker [15] is, from our point of view, very
relevant for the study of interfacial phenomena. In the sec-
ond step of their analysis, Ochoa-Tapia and Whitaker [15]
only suggest general representations to evaluate the differ-
ence between mesoscopic and macroscopic quantities in the
heterogeneous transition region. Recently, Chandesris and
Jamet [5] have shown that, given a single volume-averaged
transport equation in the entire domain (mesoscopic scale),
it is possible to solve the problem analytically inside the
heterogeneous transition zone using the method of
matched asymptotic expansions and thus to analytically
derive the boundary conditions that must be applied at
the discontinuous interface. This analytical study shows
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that the stress jump condition is related to the slip velocity
but also to the pressure gradient, through two jump param-
eters. This analysis also provides explicit relations between
these two jump parameters and the variations of the poros-
ity and permeability in the transition zone. This depen-
dence is expressed through two excess quantities. In [5],
the values of these excess quantities are adjusted to obtain
good agreement with the experimental data of Beavers and
Joseph [1], since the exact permeability and porosity pro-
files of the materials used in these experiments are not
available. However, since this analysis directly relates the
excess quantities to the variations of the porosity and per-
meability in the transition zone, it should be possible to
evaluate a priori the values of these excess quantities for
the surface of a given material, provided that the porosity
and permeability profiles are known in the transition zone.
The objective of the present study is to confirm this last
point.

This article is organized as follows. The second section
briefly recalls the theoretical aspects and the results of the
analytical study presented in [5]. The third section focuses
on the definition and properties of the excess quantities.
The linear dependence of the value of the excess quantities
on the location of the discontinuous interface is high-
lighted. Then, the determination of the porosity and per-
meability profiles at the mesoscopic level, that are needed
to make a full comparison, is addressed. In the fourth sec-
tion, the a priori evaluation of the excess quantities is stud-
ied. It is shown that a constraint of conservation should be
introduced in the matched asymptotic expansion analysis.
Provided that this constraint is satisfied, it is demonstrated
that it is possible to evaluate a priori the excess quantities.
These developments are illustrated in the fifth section by
performing comparisons with 1D numerical results.
2. Results obtained with the matched asymptotic expansions

In this section, we briefly recall the system studied in [5],
the main ideas of the method of matched asymptotic
expansions as well as the results that were obtained. Let
us consider the classical system sketched in Fig. 1 made
of a two-dimensional channel bounded by a permeable
lower wall and an impermeable upper wall. We consider
that the flow parallel to the channel is incompressible and
laminar. At the mesoscopic level of description, the flow
in the entire domain is modeled using a variable permeabil-
ity and porosity model:

d2hui
dy2

¼ /ðyÞ
KðyÞ hui þ

/ðyÞ
l

dhpif
dx

ð4Þ

where h � i is the phase average operator (or volumetric
average) defined by [22]:

hwi ¼ 1

V

Z
V f

wdV ð5Þ
for any physical variable w, where Vf represents the volume
of the fluid phase contained within the averaging volume V,
while h � if is the intrinsic phase average operator defined by:

hwif ¼
1

V f

Z
V f

wdV ð6Þ

These two averages are related through the porosity / by:

hwi ¼ /hwif ; / ¼ V f

V
ð7Þ

To solve this problem, the matched asymptotic expansions
method is used (e.g. [23,24]). This method is applicable to
the resolution of differential equations in which a small
parameter � is present. It consists in dividing the resolution
domain in a set of sub-regions: two outer regions, where the
variables of the system are slowly varying, and an inner re-

gion, where these variables are rapidly varying. A change of
variable is introduced in the inner region. The problem is
solved separately in each region using an asymptotic
expansion in �. At first order, in the outer regions, the solu-
tion is sought for in the following form:

huiðy; �Þ ¼ huið0ÞðyÞ þ �huið1ÞðyÞ þ Oð�2Þ ð8Þ

Then, matching relations are used to match the solutions of
the inner and outer regions. Chandesris and Jamet [5] apply
this method to the resolution of Eq. (4) where the small
parameter � is the ratio d/h; d is the thickness of the heter-
ogeneous transition region and h is the height of the free
channel (see Fig. 1). This small parameter is present in
the porosity and permeability profiles. The result obtained
at first order in [5] for the velocity is noted
uA ¼ huið0Þ þ �huið1Þ and is the solution of the following
problem:

d2uA

dy2
¼ 1

l
dhpif

dx
; 0 6 y 6 h ð9Þ

d2uA

dy2
�

/p

Kp

uA ¼
/p

l
dhpif

dx
; y 6 0 ð10Þ

At zeroth order, the velocity huið0Þ and its gradient are con-
tinuous at the interface [5]. At first order, the following
jump conditions are obtained for uA:

uAjy¼0þ � uAjy¼0� ¼ 0 ð11Þ
duA

dy

����
y¼0þ
� duA

dy

����
y¼0�
¼ d

Kp

�/H

KH

� �ex

huið0Þjy¼0 þ
d
l
ð�/HÞex dhpif

dx

ð12Þ

where the superscript w denotes a non-dimensional
variable:

KH¼̂ K
Kp

; /H¼̂/; yH¼̂ y
h

ð13Þ

and the overbar a variable inside the inner region:

�f ð�yHÞ¼̂f
yH

�

� �
ð14Þ
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It should be noticed that the stress jump condition at first
order (12) depends on the knowledge of the velocity at zer-
oth order huið0Þ. Therefore, to obtain the solution uA, the
system has to be solved in two steps: first the zeroth order
term huið0Þ which is the solution of Eqs. (9) and (10) with
continuous velocity and velocity gradient at the interface,
then the first order term uA which is a better approximation
since it is the solution of the same problem however with a
different and physically more relevant jump condition. In
Eq. (12), the excess quantity wex of any physical variable
w is defined by:

wex¼̂yiðw� � wþÞ þ
Z yi

�1
ðw� w�Þ þ

Z þ1

yi

ðw� wþÞ ð15Þ

where yi is an arbitrary position inside the heterogeneous
transition zone and w± are the constant asymptotic values
of w outside the heterogeneous transition zone. It is worth
noticing that the excess quantity wex is independent of the
choice of yi. The changes of variables (13) and (14) and
the definition of the excess quantities imply the following
relations:

d
Kp

�/H

KH

� �ex

¼ /
K

� �ex

; d �/H
� �ex ¼ ð/Þex ð16Þ

Thus the stress jump condition (12) for uA is simply given
by:

duA

dy

����
y¼0þ
� duA

dy

����
y¼0�
¼ /

K

� �ex

huið0Þjy¼0 þ
1

l
ð/Þex dhpif

dx

ð17Þ

This shows that the specification of the value of d is unnec-
essary. This information is indirectly contained in the
excess quantities (//K)ex and (/)ex whose numerical values
depend only on the porosity and permeability profiles in
the transition zone.
2.1. Definition of the macroscopic problems

The matched asymptotic expansion (MAE) analysis
shows that the solution at first order in � of the mesoscopic
problem given by Eq. (4) is the solution of a macroscopic

problem defined by Eqs. (9)–(11) and (17). This system is
characterized by two regions with constant properties, sep-
arated by an interface of discontinuity and should be equiv-
alent to the mesoscopic problem. However, since the stress
jump condition (17) depends on the knowledge of the
velocity at zeroth order, this macroscopic problem has to
be solved in two steps. Thus, this macroscopic problem
might not be the most appropriate for the study of practi-
cal applications. To overcome this difficulty and to simplify
the resolution of this problem, one could choose to replace
the zeroth order velocity huið0Þ of Eq. (17) by the ‘‘total”
velocity hui:

dhui
dy

����
y¼0þ
� dhui

dy

����
y¼0�
¼ /

K

� �ex

huijy¼0 þ
1

l
ð/Þex dhpif

dx
ð18Þ
Indeed, in this case, the macroscopic problem defined by
Eqs. (9)–(11) and (18) can be solved in one step. However,
the consequences of the substitution of huið0Þ by hui in the
stress jump condition might be important and have to be
carefully studied before being used. To distinguish between
these two macroscopic problems, the problem defined
using the jump condition (17) will be called the MAE mac-
roscopic problem, whereas the problem defined using the
jump condition (18) will be called the one step (OS) macro-
scopic problem.
3. Definition and properties of the excess quantities

3.1. Dependence on the location of the discontinuous

interface

It has to be noticed that the definition of the excess
quantity given by Eq. (15) assumes that the discontinuous
interface is located at y ¼ 0. Indeed, the analytical study
has been carried out in [5] using the matched asymptotic
expansions around the position y ¼ 0. However, other
choices could have been made to locate the interface of dis-
continuity inside the transition region since this region is
continuous. Thus, to keep as much generality as possible,
we now assume that the interface of discontinuity is located
at y ¼ yM, without specifying a priori this location. The
MAE analysis carried out in [5] can thus be generalized
and it is found that the matching conditions are then given
by:

lim
y!yM�

f ðy; �Þ ¼ lim
�f!�1

�f ð�f; �Þ ð19Þ

with �f ¼ ðy � yMÞ=�. The stress jump condition (17) is now
valid at y ¼ yM and the excess quantity that appears in the
analytical study is given by:

wexM ¼ ðyi� yMÞðw� �wþÞþ
Z yi

�1
ðw�w�Þþ

Z þ1

yi

ðw�wþÞ

ð20Þ

This result is obtained by a simple change of variables.
With this new definition, the excess quantity is still inde-
pendent of the arbitrary choice of yi. However, the expres-
sion (20) shows that the value of the excess quantities does

depend on the location of the surface of discontinuity yM.
The definition (20) of the excess quantity is illustrated for
yi ¼ yM in Fig. 2a where the excess quantity is represented
by the area of the crosshatched surface.

To simplify the expression (20), a new quantity is now
introduced. For any physical quantity w, yw is defined as
the particular value of yi such that the sum of the last
two integral terms of (20) is zero:Z yw

�1
ðw� w�Þ þ

Z þ1

yw

ðw� wþÞ ¼ 0 ð21Þ



Fig. 2. Different representations of an excess quantity. (a) Excess
quantity, (b) definition of yw using Eq. (21), (c) excess quantity given by
Eq. (22).
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Fig. 3. Example of porosity and permeability profiles obtained by filtering
microscopic results obtained from microscopic 2D simulations.
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and is therefore named the center of gravity of the profile
of w. It comes:

wexM ¼ ðyw � yMÞðw� � wþÞ ð22Þ

This definition is illustrated in Fig. 2. yw is such that the
two crosshatched areas of Fig. 2b are equal. The new
expression (22) giving the excess quantity corresponds to
the crosshatched area of Fig. 2c. On these figures, the loca-
tion of the discontinuous interface yM is arbitrary, while
the location of yw is not. As shown by Eq. (21), yw is de-
fined only by the profile of w(y). Furthermore, Eq. (22)
shows that the dependence of the excess quantity wexM is
linear on yM. This result explains the large sensitivity of
the stress jump coefficient with the position of the surface
of discontinuity reported in previous studies [18,10,19,4].
3.2. Porosity and permeability profiles

In order to validate our analysis and to determine the
numerical values of the excess quantities, we have to
specify the porosity and permeability profiles in the heter-
ogeneous transition region. Indeed, these profiles are neces-
sary to compute the flow at the mesoscopic scale and
to determine the excess quantities without resorting to
adjusted values at the macroscopic scale. Since the objec-
tive of this study is not to focus on the determination of
these profiles, we refer the interested reader to the work
of Breugem [4,3]. In [3, Chapter 4], he explains how to
obtain the porosity and permeability profiles of the vari-
able-permeability model at the mesoscopic scale from a
direct numerical simulation at the microscopic scale, using
the volume averaging method and an appropriate filter.
Following this approach, we performed a 2D microscopic
simulation on the same flow geometry to obtain the poros-
ity and the permeability profiles. This geometry is recalled
in Fig. 1 (microscopic description). In the y-direction, the
porous medium is made of seven cubes of size dp. The dis-
tance between two cubes is also dp and the size of the
domain in the y-direction is fixed by taking h ¼ hb ¼
16dp, where hb is the height of the porous medium. In the
horizontal direction, periodic boundary conditions are
used. The results obtained for the porosity and the perme-
ability profiles are given in Fig. 3. It is interesting to note
that the permeability and the porosity do not vary over
the same distance. The size of the heterogeneous transition
region is about 3 dp for the porosity and about 5 dp for the
permeability (see Fig. 3). It is therefore not possible to
express the permeability as a function of the porosity in
the transition region, as was proposed by Ochoa-Tapia
and Whitaker [16] and Goyeau et al. [9].

It is worth noting that the porosity and permeability
profiles can also be deduced from experimental data.
Indeed, the porosity variations are easily deduced from
photographs of the transition region [20,8]. To obtain the
permeability profile, one needs first to compute the varia-
tions of the second derivative of the longitudinal velocity
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(see Eq. (4)). Saleh et al. [20] show that it is possible to
obtain this information (see their Figs. 15 and 16). Given
the typical profile of the second derivative that they obtain
(see their Fig. 14), non-monotonic permeability profiles
would be deduced as in our numerical simulation.

3.3. First results

Once the porosity and permeability profiles are known,
the velocity at the mesoscopic scale can be obtained by
solving Eq. (4) numerically. The solution of the MAE mac-
roscopic problem is obtained by solving Eqs. (9) and (10)
analytically, using the jump conditions (11) and (17) and
the definition of the excess quantities proposed previously
(22). The analytical solution of this problem is given in
Appendix A. The solution of the OS macroscopic problem
is obtained by solving the same problem but using the sec-
ond jump condition (18). The analytical solution of this
second problem is given in Appendix B.

The mesoscopic solution and the MAE macroscopic
solutions obtained using the porosity and permeability pro-
files of the previous section (see Fig. 3), when h ¼ hb, are
plotted in Fig. 4a for three different values of yM. This
figure shows that the MAE macroscopic velocity is not cor-
rectly predicted in the free fluid channel, and this, whatever
the choice of yM. Moreover, we observe that the choice of
yM has hardly any influence on the MAE velocity profile in
the free fluid region. It seems that the linear dependence of
the excess quantities on yM allows to have a free fluid velo-
city in the channel almost independent of the choice of yM.
In Appendix C, it is proven that this is indeed the case by
rewritting the analytical solution of the free macroscopic
velocity in a new system of coordinates independent of
the location of the discontinuous interface yM. The two
excess quantities do depend linearly on yM. But this depen-
dence does not influence the outer profiles, since due to this
dependence, the MAE macroscopic free fluid velocity
remains almost independent of yM.

In Fig. 4b, the mesoscopic solution is compared to the
solutions obtained by solving the OS macroscopic problem
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Fig. 4. Mesoscopic, MAE and OS macroscopic velocity results obtained using
mesoscopic and MAE macroscopic solutions. (b) Comparison of the mesosco
for three different values of yM. This figure shows that the
OS macroscopic solution is not at all correctly predicted in
the free fluid channel. Furthermore, the OS macroscopic
solutions are very different from the MAE macroscopic
solutions. In particular, for the OS macroscopic problem,
the choice of yM has a very large influence on the velocity
profile in the free fluid region.

These first results suggest that something is missing in
the matched asymptotic expansion analysis, since the
MAE macroscopic velocity is not correctly predicted in
the free fluid channel. This problem will be tackled in the
following section. These results also show that substituting
huið0Þ by hui in the jump condition to simplify the resolution
of the macroscopic problem has important consequences
and therefore should not be used.
4. Matched asymptotic expansions under conservation

constraint

4.1. Excess quantities and surface-excess forces

At the mesoscopic scale, the flow in the entire domain is
described by Eq. (4). This equation expresses the balance
between three forces: the friction force (l (//K) u), the
pressure force / (dp/dx) and the viscous force l (d2u/
dy2). In this model, the porosity and permeability are vary-
ing only in the interfacial transition zone; they are constant
in the two homogeneous regions. At the macroscopic scale,
the flow is governed by Eqs. (9) and (10) where the porosity
and permeability are constant in each homogeneous region.
By construction, at this scale, the friction force and the
pressure force are not properly described in the interfacial
transition zone since the porosity and the permeability are
constant. In the study of interfacial phenomena, the differ-
ence of any physical quantity between its mesoscopic and
its macroscopic values in the interfacial transition zone
can be expressed through excess quantities [7]. For
instance, the excess quantity associated to the friction force
is given by:
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where uc is the velocity solution of the mesoscopic pro-
blem and ud is the velocity solution of a given macroscopic
problem (either the MAE or the OS macroscopic prob-
lem). The excess quantity (l (//K) u)exM represents exactly
the amount of the force that is not seen by the macro-
scopic model in the interfacial transition zone compared
to the mesoscopic model. However, this amount of
force has to be taken into account to give an accurate
description of the problem at the macroscopic scale.
This is done by assigning this surface-excess force to
the macroscale surface via a stress jump condition. The
main difficulty is to express this excess quantity using
only macroscopic parameters in order to close the macro-
scopic problem. In this framework, the results obtained
in [5] using the matched asymptotic expansion analysis
can be viewed in a new way. The matched asymptotic
expansion allows to obtain a linearized form of the friction
surface-excess force that depends only on macroscopic
quantities:

l
/
K

u
� �exM

’ l
/
K

� �exM

huið0ÞjyM
ð24Þ

However, this expression is only an approximation at first
order.

Let us now consider the two other forces, i.e. the pres-
sure and viscous forces. For the pressure force, the result
obtained in [5] is not an approximation but is exact since
the pressure gradient is constant:

/
dp
dx

� �exM

¼ ð/ÞexM dp
dx

ð25Þ

The pressure surface-excess force is therefore exactly con-
served in this expression.

For the viscous surface-excess force, the excess quan-
tity depends only on macroscopic quantities or on meso-
scopic quantities located in the homogeneous free fluid
region:

l
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ð26Þ
Since the macroscopic model is supposed to be such that
the mesoscopic and macroscopic solutions are equal in
the two homogeneous regions, the first term in the right
hand side of Eq. (26) is zero. The second term in the right
hand side of Eq. (26) is exactly the stress jump that is as-
signed to the macroscopic surface. The stress jump condi-
tion (17) is simply recovered in this framework, by
adding Eqs. (24)–(26).

These developments show that the only approximation
of the surface-excess forces is due to the friction force, as
shown by Eq. (24). The effects of this approximation are
too important to be neglected since, using this expression,
the MAE macroscopic velocity is not correctly predicted
(see Section 3.3). Thus, the question is the following: is it
possible to obtain a new linearized expression for the excess
quantity associated to the friction surface-excess force such
that this surface-excess force is exactly conserved? To
answer this question, the analytical study made using the
matched asymptotic expansions will be revisited under
the constraint of conservation of the friction surface-excess
force.

4.2. Introduction of the conservation constraint

In the matched asymptotic expansion study carried out
in [5], as �! 0, the porosity and permeability profiles are
modified. Indeed, the porosity and permeability profiles
depend on the inverse of d (see Eqs. (38) and (39) for exam-
ple). Since � ¼ d=h, as �! 0, h being kept constant, the
profiles become stiffer to give, at the limit, profiles that
are discontinuous at yM (the matched asymptotic expan-
sion is carried out around the position y ¼ yM). As �! 0,
if the profile of a physical quantity w becomes stiffer
around its center of gravity yw, the integral of the physical
profile of w minus its limit discontinuous profile, is zero:
the w quantity is exactly conserved in the up-scaling.
Now, if the discontinuous interface is located at a position
yM different from yw, the excess quantity wexM (Eq. (22))
accounts exactly for the gap between yw and yM (see
Fig. 2c).

The pressure force is related to the porosity profile.
However, when the porosity profile tends to a Heaviside
function as �! 0, since the pressure gradient does not
depend on the porosity, the conservation of the porosity
through (/)exM ensures the conservation of the pressure
force. For the friction force, it is different. This force is
related to the profile of //K but also to the velocity. But
now, the velocity depends directly on the profile of //K.
Hence, as the profile of //K becomes stiffer, the velocity
is modified and the friction force might not be conserved
as �! 0, if the constraint is not enforced. If the center of
gravity of the profile of //K was the same as the center
of gravity of the friction force, the friction force would
be conserved in the up-scaling performed previously.
Unfortunately, there is no reason that this is indeed the
case.

To be more precise, the evaluation of the friction sur-
face-excess force in the matched asymptotic expansion
analysis depends only on the profile of //K and on the zer-
oth order velocity in the inner region (see [5]). From the
matched asymptotic expansion analysis [5], we know that
the zeroth order velocity is constant in the inner region.
This result allows to obtain the linearized form of the fric-
tion surface-excess force (24). The positive point about this
result is that the obtained linear dependence on yM of the
closure expression for the friction surface-excess force
allows to have a macroscopic free fluid velocity in the chan-
nel almost independent of the choice of yM (see Section
3.3). The negative point is that the friction surface-excess
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force is not conserved because the center of gravity of the
profile of //K is not in general the same as the center of
gravity of the friction force. Therefore, we suggest to intro-
duce the following new excess quantity associated to the
friction surface-excess force

l
/
K

u
� �exM

¼ l
/
K

� �exD

huið0ÞjyM
ð27Þ

with

/
K

� �exD

¼ y/=K þ Dy � yM

� 	 /p

Kp

� �
ð28Þ

where ðy/=K þ DyÞ is the center of gravity of the friction
force. Thus, the friction surface-excess force is conserved
in the up-scaling analysis and the linear dependence on
yM of the closure expression for the friction surface-excess
force is not modified. Since the size of the transition zone is
d, we expect Dy to be of the order of d. At this point Dy is
unknown and its determination is examined in the follow-
ing section.

4.3. Determination of Dy

By construction Dy is such that the friction surface-
excess force is exactly conserved in the matched asymptotic
expansion analysis. Since the viscosity is constant, it comes
from Eqs. (23) and (27):Z yM

�1

/
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Z h
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/
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huið0ÞjyM

ð29Þ

The determination of Dy requires to solve Eq. (29). The res-
olution of this equation requires the specification of uc, that
is unfortunately unknown. This difficulty is overcome by
following an indirect approach.

The mesoscopic solution verifies Eq. (4). This equation
is integrated between y ¼ �1 and h:
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Z h
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/
l
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dx

� �
ð30Þ

The MAE macroscopic solution verifies Eqs. (9) and (10),
with the jump conditions (11) and (17) at the interface.
Eq. (10) is integrated between y ¼ �1 and y ¼ yM and
Eq. (9) between y ¼ yM and y ¼ h:
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ð31Þ

Subtracting Eqs. (30) and (31) shows that, when the pres-
sure and friction surface-excess forces are exactly con-
served, one has:

duc

dy

����
h

¼ duA

dy

����
h

ð32Þ
And inversely, when the relation (32) is verified, since the
pressure surface-excess force is conserved (Eq. (25)), we
can deduce that the friction surface-excess force is also con-
served. Since the mesoscopic and macroscopic velocity pro-
files are parabolic in the homogeneous free fluid region and
both vanish at y ¼ h, when Eq. (32) is verified the meso-
scopic and macroscopic velocity parabolic profiles are
equal. This shows that the exact conservation of the fric-
tion surface-excess force is the key feature that has to be
imposed to recover the correct velocity profile in the free
fluid region when the system is described at the macro-
scopic scale.

4.3.1. Velocity in the free fluid region at the mesoscopic scale

In the homogeneous free fluid region (/ ¼ 1; 1=K ¼
0), the solution of the mesoscopic problem uc verifies

l
d2uc

dy2
¼ dp

dx
ð33Þ

with a no slip boundary condition at the upper wall. The
velocity profile is then extended in the heterogeneous tran-
sition region. The location where this extended velocity
profile vanishes is called the equivalent impermeable wall

and is noted yimp. Indeed, if the porous medium is replaced
by an impermeable wall, this impermeable wall would be
located at yimp to conserve the parabolic profile of the
velocity in the free fluid channel. Therefore, yimp character-
izes the velocity in the free fluid channel at the mesoscopic
scale.

4.3.2. Velocity in the free fluid region at the macroscopic

scale for the MAE problem

We now want to characterize the velocity in the free
fluid channel at the macroscopic scale. The analytical
expression of the solution of the MAE problem in the free
fluid channel is given by Eq. (44) in Appendix A, where
(//K)exM has to be replaced by (//K)exD in Eq. (47). The
extended parabolic profile of the solution in the free fluid
region vanishes at:

y ¼ yM þ r
ffiffiffiffiffiffi
Kp

p 2ðCð0Þ2 þ �C
ð1Þ
2 Þ

r2
� 1

 !
ð34Þ

(see Appendix A for the definitions of r, Cð0Þ2 and Cð1Þ2 ). To
simplify this expression the discontinuous interface is
located at yM ¼ ðy/=K þ DyÞ. Thus, the excess quantity
associated to the friction force is zero. It comes:

y ¼ ðy/=K þ DyÞ �
2
ffiffiffiffiffiffi
/p

p ffiffiffiffiffiffi
Kp

p
þ 2ð/ÞexM þ r
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ffiffiffiffiffiffi
/p

p
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ð35Þ

Here, the value of (/)exM is given by Eq. (22), with yM ¼
ðy/=K þ DyÞ. Since

ffiffiffiffiffiffi
Kp

p
=ðh� yMÞ ¼ 1=r is small compared

to one and assuming that (/exM) is always small compared
to h, one gets:

y � ðy/=K þ DyÞ �
ffiffiffiffiffiffi
Kp

/p

s
ð36Þ
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Therefore, Eq. (36) characterizes indirectly the velocity in
the free fluid channel at the macroscopic scale.

If the following relation is verified:

yimp ¼ y/=K þ Dy �
ffiffiffiffiffiffi
Kp

/p

s
ð37Þ

the mesoscopic and the MAE macroscopic extended para-
bolic profiles of the velocity are equal and therefore Eq.
(32) is verified. Since we have shown previously the equiv-
alence between Eq. (32) and the conservation of the friction
surface-excess force, this conservation is indirectly ob-
tained by imposing the condition (37). Therefore, the con-
servation of the friction surface-excess force is indirectly
obtained. This reasoning, based on the introduction of a
new excess quantity associated to the friction surface-
excess force is valid only if the value of (//K)exD does not
depend on the height of the free channel h. If this were
not the case, the generality of the approach would be lost
as well as the interfacial intrinsic character of Dy. As we
will see in Section 5, Dy barely depends on h, which con-
firms the above interpretation.
5. Comparisons to numerical results

5.1. Description of the 1D problem

To quantify the effect of a given porous medium, Bea-
vers and Joseph [1] compared the mass flow rate in the free
fluid channel obtained with a permeable lower wall to the
one that would be obtained with an impermeable wall for
different heights of the free fluid channel. Here, we numer-
ically reproduce these experiments for four different mate-
rials by considering different heights of the free channel:
h ¼ hb, 1.25 hb, 1.5 hb, 1.75 hb and 2 hb.

The properties of the homogeneous porous medium are
fixed: hb ¼ 16 dp and /p ¼ 0:75 as in the DNS of Section

3.2, and Kp ¼ d2
p=18, which is a good estimate of the homo-

geneous permeability obtained with the 2D DNS. Then the
value of hb is fixed to 1, which gives dp ¼ 0:0625 and
Kp ¼ 2:17� 10�4 m2. For the size of the heterogeneous
transition region, the ratio d/dp is fixed to 3. In all the
study, the pressure gradient is kept constant. The ratio
$p/l is fixed to �1.

At the mesoscopic scale, a material is characterized by
its porosity and permeability profiles in the heterogeneous
transition zone. For the first three materials, the same
porosity profile is used:

/ðyÞ ¼
1� /p

2
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2
ð38Þ

For the permeability, different profiles are tested. For the
first material, we consider a hyperbolic tangent profile:
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2

� �
ð39Þ
Then, more complex profiles are used that are more repre-
sentative of the profiles obtained from experiments [20] or
filtered DNS [3,4] (see Fig. 3). For the second material, the
chosen permeability profile is:
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For the third material, the permeability profile is similar
but shifted:
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Then for the fourth material, a more complex porosity pro-
file is studied, that is supposed to characterize mass storage
in the transition region:
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and the profile of //K is supposed to be given by a simple
hyperbolic tangent function:
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These different profiles are represented in Fig. 5. The values
of y/ and y//K obtained for the four materials are provided
in Table 2.

The velocity profiles at the mesoscopic scale are
obtained by solving Eq. (4) numerically, with no slip
boundary conditions at y ¼ h and y ¼ hb.

In Section 4.3, we underlined that our analysis is valid
only if the value of Dy does not depend on h. Thus, this
hypothesis is checked first. For each material and each free
channel height, the value of yimp is obtained by extending
the parabolic profile of the mesoscopic solution inside the
porous region. Then, Dy is computed using Eq. (37). The
results for Dy are presented in Table 1. Dy is almost inde-
pendent of h, which substantiates our analysis. The mean
value of Dy obtained for each material is also presented.
This also shows that only one simulation at the mesoscopic
scale with an arbitrary h is sufficient to compute yimp and
then to determine Dy using Eq. (37).

5.2. Velocity results

In Fig. 6, the mesoscopic velocity profiles uc obtained by
solving Eq. (4) numerically are compared to the MAE mac-
roscopic profiles computed analytically using the new



Table 1
Result obtained for Dy as a function of h for the different materials

h/hb 1 1.25 1.5 1.75 2 Mean Dy

Material no. 1 0.1534 0.1554 0.1554 0.1574 0.1574 0.1558
Material no. 2 0.0107 0.0135 0.0153 0.0127 0.0157 0.0136
Material no. 3 0.0565 0.0575 0.0575 0.0581 0.0565 0.0572
Material no. 4 0.1570 0.1590 0.1600 0.1610 0.1620 0.1600
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Fig. 5. Non-dimensional porosity and permeability profiles for the four materials considered in the study.
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definition of the friction excess quantity (//K)exD. The mac-
roscopic profiles are computed with the discontinuous inter-
face located at yM such that the quantity (yM � y/=K� Dy) is
positive. When this constraint is not satisfied, the result is
not physical since negative slip velocities are obtained at
the interface. However, provided that this constraint is sat-
isfied, the choice of yM in the transition region is arbitrary
since it was proven in Section 3.3 that it has no conse-
quence on the macroscopic velocity profile in the free fluid
region. Thus, we choose to locate the discontinuous inter-
face at yM ¼ 0:2 for the first material, yM ¼ 0:25 for the sec-
ond, yM ¼ 0 for the third and yM ¼ 0:2 for the fourth
material. The excess quantities computed with these values
of yM are presented in Table 2. One can notice that the con-
straint ðyM � y/=K � DyÞ > 0 implies that (//K)exD is nega-
tive. Fig. 6 shows that for the four materials, the MAE
macroscopic velocity in the free fluid region is very well
predicted. This supports the discussion on the excess quan-
tity and the introduction of the conservation constraint in
the matched asymptotic expansions analysis.

In Fig. 7, a zoom of the solution obtained for the third
material in the transition region is presented. The velocity
is not correctly predicted by the macroscopic model com-
pared to the mesoscopic one in the transition region. This
is not surprising since by construction the macroscopic
model is appropriate to describe the problem only in the
two homogeneous regions, where the porosity and perme-
ability are constant. This difference between the mesoscopic
and the macroscopic results has also been observed and
highlighted by Goyeau et al. [9] (see their Fig. 9).
5.3. A priori estimation of Dy

With the reasoning of Section 4.3, one still has to deter-
mine the location of the equivalent impermeable wall yimp

to deduce the value of Dy. In this study, it is determined
numerically from the resolution of the mesoscopic problem
for a particular but arbitrary value of h. The difficulty to
determine Dy a priori is that in Eq. (29) Dy still depends
on uc, that is of course unknown. However, since uc and
uA differ only in a small region, if uc is replaced by uA in
Eq. (29) we can expect to obtain a first estimate of Dy.
To simplify the calculation, the discontinuous interface is
located at ðy/=K þ DyÞ. The macroscopic solution uA is
known analytically and is given in Appendix A, where
(//K)exM has to be replaced by (//K)exD in Eq. (47). The
results obtained using this approach are presented in Table
3. The trend is good even though we seem to always under-
estimate the value of Dy by a constant value of approxi-
mately 0,05. But, this estimate is not accurate enough,
since the error can be of the same order as the value, which
implies that the results obtained with this approximation
are neither worse nor better than those obtained with
Dy ¼ 0 (matched asymptotic expansion without con-
straint). So far, we are not able to predict the value of Dy
prior to any simulation.
5.4. Summary

Before discussing the results that have been obtained, we
summarize what has to be done to obtain the solution of
the MAE macroscopic problem starting from given poros-
ity and permeability profiles in the heterogenous transition
region at the mesoscopic scale. The values of y/ and y//K

are deduced from the porosity and permeability profiles
using Eq. (21). One simulation at the mesoscopic scale
has to be run for an arbitrary value of the free channel
height to determine the location of the equivalent imperme-
able wall yimp. This is done by extending the parabolic pro-
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Fig. 6. Comparison of the mesoscopic and macroscopic solutions obtained using the new definition (28) of the excess quantity associated to the friction
force. (a) Material no. 1: yM ¼ 0:2, (b) Material no. 2: yM ¼ 0:25, (c) Material no. 3: yM ¼ 0, (d) Material no. 4: yM ¼ 0:2.

Table 2
Results from the numerical study at the mesoscopic scale

Material y/ y//K yimp Dy yM (/)exM (//K)exM (//K)exD

No. 1 0 0.0156 0.1544 0.1558 0.2 0.05 �637 �99
No. 2 0 0.2343 0.2310 0.0136 0.25 0.0625 �54 �7
No. 3 0 �0.0925 �0.0523 0.0572 0 0 �320 �122
No. 4 0.3 0 0.1428 0.16 0.2 �0.025 �691 �139
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file of the mesoscopic velocity inside the porous region.
Then, the value of Dy can be deduced from these results
using Eq. (37). At this point, to compute the values of
the two excess quantities (/)exM and (//K)exD, using Eq.
(22) for the pressure force and Eq. (28) for the friction
force, only the location of the discontinuous interface yM

is missing. As seen in Section 3.3, this choice has no conse-
quence on the macroscopic velocity profile as long as yM

belongs to the transition region and is such that
(yM � y/=K � Dy) remains positive. For a given position
yM, one can obtain the values of the two excess quantities
and solve the MAE macroscopic problem using the stress
jump condition (17) at yM.
6. Discussion

6.1. Intrinsic interfacial properties

The dependence of the excess quantities on the location
of the surface of discontinuity yM is not compatible with
the idea of intrinsic interfacial properties. Therefore, we
cannot state that these excess quantities are intrinsic inter-
facial properties. However, the structure of the transition
region is shown to be characterized by three structural
parameters that are true intrinsic interfacial properties:
y//K, y/ and Dy. The center of gravity of the profiles of /
and //K (y/ and y//K) are given by the permeability and
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Table 3
Comparison of the actual values and estimated values of Dy

Estimation Dy

Material no. 1 0.1074 0.1558
Material no. 2 �0.0323 0.0136
Material no. 3 0.0077 0.0572
Material no. 4 0.102 0.16
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porosity profiles (Eq. (21)). The determination of Dy is
much more complex and relies on the constraint of conser-
vation of the friction surface-excess force. We have shown
how to obtain its value for given porosity and permeability
profiles and it is verified that its value is indeed independent
of h, the height of the free fluid channel, which confirms its
intrinsic character.
6.2. Porous boundary layer

The use of the Darcy-Brinkman equation has also to be
addressed. In general, the Darcy-Brinkman model is intro-
duced to be able to describe the boundary layer region
within the porous region. The choice of the Darcy-Brink-
man equation combined with a variable permeability and
porosity model, can be justified at the mesoscopic scale
of description: filtered DNS data are very well represented
by this model [3]. However, at the macroscopic scale (con-
stant porosity and permeability) one has to be careful with
the interpretation of the results obtained with the Darcy-
Brinkman equation. Indeed, is the macroscopic model able
to correctly describe the porous boundary layer?

The porous boundary layer is defined as the layer
between the interface and the location in the porous region
where the velocity approaches its equilibrium value U1.
Since this definition is related to the interface, it is a notion
associated to the macroscopic level of description. How-
ever, at the macroscopic scale, the velocity decays exponen-
tially in the porous region (see Eq. (45)). Therefore, we
know that the size of the boundary layer obtained with
the macroscopic model is of order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kp=/p

q
. Sinceffiffiffiffiffiffi

Kp

p
� dp � d, the thickness of the transition region and

of the boundary layer are of the same order. Thus, the por-
ous boundary layer region is inseparable from the interfa-
cial transition region. However, by construction, the
macroscopic model is not appropriate to describe the prob-
lem in the heterogeneous transition region. Therefore, the
macroscopic model is not able to correctly describe the por-
ous boundary layer. This is clearly visible in Fig. 7, where
the macroscopic model underestimates the velocity in the
transition region and therefore underestimates the size of
the porous boundary layer. This study shows that the size
of the boundary layer thickness cannot be determined from
a model with two homogeneous regions separated by a dis-
continuous interface.

7. Conclusion

The objective of this study was to show that it is possible
to provide an explicit relation between the values of the
jump parameters of the stress jump condition that one
should impose at a free-fluid/porous interface and the
structure of the transition region. In [5], an explicit relation
is proposed between the two jump parameters and the
porosity and permeability variations in the transition zone
through excess quantities. For given porosity and perme-
ability profiles, the computation of the excess quantities
should have been direct. However, using the relation
obtained in [5], the macroscopic velocity in the free fluid
region is not correctly predicted. This is the consequence
of the non-exact conservation of the friction surface-excess
force in the matched asymptotic expansions analysis.
Therefore, this analysis has been revisited to impose the
constraint of conservation of the friction surface-excess
force and the excess quantity associated to the friction
force has been redefined. The important result is that, using
this new definition of the excess quantity associated to the
friction force, the values of the two jump parameters are
directly related to the structure of the transition region
through three structural quantities: y//K, y/ and Dy (Eqs.
(22) and (28)) without any adjustable parameter. Further-
more, this analysis makes explicit the linear dependence
between the jump parameters and the location of the dis-
continuous interface, a dependence that has been observed
in previous studies [18,10,19,4]. It is proven that, as a con-
sequence of this dependence, the velocity in the free chan-
nel remains independent of the arbitrary choice of the
location of the discontinuous interface. Therefore, this
analysis proves that there is no best choice for the location
of the discontinuous interface inside the transition region,
as long as (yM � y/=K � Dy) remains positive. These results
are illustrated by numerically studying 1D problems similar
to the Beavers and Joseph experiments. Very good agree-
ment is obtained between the mesoscopic and the MAE
macroscopic solutions.

An important advantage of this study is also the intro-
duction of the three scales of description: microscopic, mes-
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oscopic and macroscopic. This introduction clarifies the
hypotheses attached to each scale of description. For exam-
ple, the interface is a macroscopic notion, whereas it is
shown that the size of the porous boundary layer is a mes-
oscopic notion. Furthermore, the two up-scalings from one
scale of description to another (microscopic ? mesoscopic
and mesoscopic ? macroscopic) have been made explicit,
suggesting a methodology to derive boundary conditions
for other transport phenomena.
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Appendix A. Analytical solution of the MAE macroscopic

problem

The solution of the MAE macroscopic problem is
obtained by solving Eqs. (9) and (10) analytically, using
the jump conditions (11) and (17). This analytical solution
is given in [5] and is recalled here for completeness concern
and also to give the more general form of the result when
the discontinuous interface is located at yM and not at
y ¼ 0:

uAðyÞ¼U1
�r2

2

ðy� yMÞ
2

ðh� yMÞ
2
�1

 !
þ Cð0Þ2 þ � Cð1Þ2

� 	 y� yM

h� yM

�1

� �" #
; yM6 y6 h

ð44Þ

uAðyÞ¼U1 1þCð0Þ1 þ �C
ð1Þ
1

� 	
exp

ffiffiffiffiffiffi
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with

r ¼ h� yMffiffiffiffiffiffi
Kp
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2ð1þ r
ffiffiffiffiffiffi
/p

p
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p
Þ
ð1þ Cð0Þ1 ÞKp

/
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� �exM

� /ð ÞexM

 !

¼ �Cð1Þ1

ð47Þ

This result is obtained from [5] by a simple change of
variable.
Appendix B. Analytical solution of the OS macroscopic

problem

The solution of the OS macroscopic problem is obtained
by solving Eqs. (9) and (10) analytically, using the jump
conditions (11) and (18). Using only the velocity continuity
at the interface, the solution in the free fluid and porous
region is given by:
uOSðyÞ ¼
1

2l
dp
dx
ðy � hÞðy � yMÞ þ uB

h� y
h� yM

; yM 6 y 6 h

ð48Þ

uOSðyÞ ¼ ðuB � U1Þ exp

ffiffiffiffiffiffi
/p

Kp

s
ðy � yMÞ

 !
þ U1; y 6 yM

ð49Þ

where uB ¼ uOSðyMÞ is the slip velocity and the Darcy velo-
city U1 is expressed as follows:

U1 ¼ �
Kp

l
dp
dx

ð50Þ

The solution is still parameterized by uB. The slip velo-
city is determined using the stress jump condition (18)
at yM:

uB ¼
U1ðh� yMÞ
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Appendix C. Location of the discontinuous interface

Here, we prove that the MAE macroscopic velocity in
the free fluid region is independent of the location of the
discontinuous interface yM by rewriting the analytical solu-
tion of the free macroscopic velocity in a new system of
coordinates independent of the location of the discontinu-
ous interface yM. The analytical macroscopic solution for
the velocity is expressed in the system of coordinates y

and the solution depends on the sign of ðy � yMÞ (see
Eqs. (44) and (45)). Since the choice of yM is arbitrary in
the transition region, the analytical solution seems to
depend on the location of the discontinuous interface. A
new system of coordinates Y is now introduced such that
Y ¼ 0 when y ¼ y/=K . The choice of this system is no longer
arbitrary since the quantity y//K is an intrinsic property of
the surface of a given material. This change of variable
implies:

Y ¼ y � y/=K ð52Þ
H ¼ h� y/=K ð53Þ

The objective is to show that the macroscopic velocity uA in
the free fluid region is independent of yM. Since uA in the
free fluid region is a parabola and vanishes at the upper
wall whatever the choice of yM, it is sufficient to show that
duA/dY is independent of yM. From Eq. (44), in the y sys-
tem of coordinate it comes:

duA

dy
¼ U1 � y � yM

Kp|fflfflfflfflffl{zfflfflfflfflffl}
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For more clarity, we introduce:

R ¼ Hffiffiffiffiffiffi
Kp

p ; x ¼
y/=K � yM

H
; c ¼

y/ � y/=K

H
ð55Þ

It comes:

B1 ¼
�Y
Kp

� Rffiffiffiffiffiffi
Kp

p x ð56Þ

Using relations (22), (28), (52) and (55), the first order
Taylor expansion in x of B2 is:

B2 ¼
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xþ Oðx2Þ ð57Þ

However, c is of the order of x, therefore the second part of
the first order term in x is a Oðx2Þ. Adding Eqs. (56) and
(57) it comes:

duA

dY
¼ U1 �

Y
Kp

þ
ffiffiffiffiffiffi
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The first order term in x vanishes. This explains why the
choice of yM hardly influences the macroscopic velocity
profiles of our analysis in the free fluid channel.
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